18 research outputs found

    Free-Standing Leaping Experiments with a Power-Autonomous, Elastic-Spined Quadruped

    Get PDF
    We document initial experiments with Canid, a freestanding, power-autonomous quadrupedal robot equipped with a parallel actuated elastic spine. Research into robotic bounding and galloping platforms holds scientific and engineering interest because it can both probe biological hypotheses regarding bounding and galloping mammals and also provide the engineering community with a new class of agile, efficient and rapidly-locomoting legged robots. We detail the design features of Canid that promote our goals of agile operation in a relatively cheap, conventionally prototyped, commercial off-the-shelf actuated platform. We introduce new measurement methodology aimed at capturing our robot’s “body energy” during real time operation as a means of quantifying its potential for agile behavior. Finally, we present joint motor, inertial and motion capture data taken from Canid’s initial leaps into highly energetic regimes exhibiting large accelerations that illustrate the use of this measure and suggest its future potential as a platform for developing efficient, stable, hence useful bounding gaits. For more information: Kod*La

    Female-Biased Dispersal and Gene Flow in a Behaviorally Monogamous Mammal, the Large Treeshrew (Tupaia tana)

    Get PDF
    Background: Female-biased dispersal (FBD) is predicted to occur in monogamous species due to local resource competition among females, but evidence for this association in mammals is scarce. The predicted relationship between FBD and monogamy may also be too simplistic, given that many pair-living mammals exhibit substantial extra-pair paternity. Methodology/Principal Findings: I examined whether dispersal and gene flow are female-biased in the large treeshrew (Tupaia tana) in Borneo, a behaviorally monogamous species with a genetic mating system characterized by high rates (50%) of extra-pair paternity. Genetic analyses provided evidence of FBD in this species. As predicted for FBD, I found lower mean values for the corrected assignment index for adult females than for males using seven microsatellite loci, indicating that female individuals were more likely to be immigrants. Adult female pairs were also less related than adult male pairs. Furthermore, comparison of Bayesian coalescent-based estimates of migration rates using maternally and bi-parentally inherited genetic markers suggested that gene flow is female-biased in T. tana. The effective number of migrants between populations estimated from mitochondrial DNA sequence was three times higher than the number estimated using autosomal microsatellites. Conclusions/Significance: These results provide the first evidence of FBD in a behaviorally monogamous species without mating fidelity. I argue that competition among females for feeding territories creates a sexual asymmetry in the costs an

    Alien fishes in Australia

    No full text
    <p>Data, computer code, and supplemental results from: </p><p><br></p><p>GarcĂ­a-DĂ­az, P., Kerezsy, A., Unmack, P.J., Lintermans, M., Beatty, S.J., Butler, G.L., Freeman, R., Hammer, M.P., Hardie, S., Kennard, M.J., Morgan, D.L., </p><p>Pusey, B.J., Raadik, T.A., Thiem, J.D., Whiterod, N., Cassey, P. & Duncan, R.P. (2018). </p><p>Transport pathways shape the biogeography of alien freshwater fishes. Diversity and Distributions, https://onlinelibrary.wiley.com/doi/abs/10.1111/ddi.12777</p><p><br></p><p>Date last modified:22/05/2018</p><p>Date uploaded: 04/10/2017</p><div><br></div><div>Please refer to the README file for further information</div

    Spectrum of neurodevelopmental disease associated with the GNAO1 guanosine triphosphate-binding region

    No full text
    Objective To characterize the phenotypic spectrum associated with GNAO1 variants and establish genotype-protein structure-phenotype relationships. Methods We evaluated the phenotypes of 14 patients with GNAO1 variants, analyzed their variants for potential pathogenicity, and mapped them, along with those in the literature, on a three-dimensional structural protein model. Results The 14 patients in our cohort, including one sibling pair, had 13 distinct, heterozygous GNAO1 variants classified as pathogenic or likely pathogenic. We attributed the same variant in two siblings to parental mosaicism. Patients initially presented with seizures beginning in the first 3 months of life (8/14), developmental delay (4/14), hypotonia (1/14), or movement disorder (1/14). All patients had hypotonia and developmental delay ranging from mild to severe. Nine had epilepsy, and nine had movement disorders, including dystonia, ataxia, chorea, and dyskinesia. The 13 GNAO1 variants in our patients are predicted to result in amino acid substitutions or deletions in the GNAO1 guanosine triphosphate (GTP)-binding region, analogous to those in previous publications. Patients with variants affecting amino acids 207-221 had only movement disorder and hypotonia. Patients with variants affecting the C-terminal region had the mildest phenotypes.

    Spectrum of neurodevelopmental disease associated with the GNAO1 guanosine triphosphate-binding region

    No full text
    OBJECTIVE: To characterize the phenotypic spectrum associated with GNAO1 variants and establish genotype-protein structure-phenotype relationships. METHODS: We evaluated the phenotypes of 14 patients with GNAO1 variants, analyzed their variants for potential pathogenicity, and mapped them, along with those in the literature, on a three-dimensional structural protein model. RESULTS: The 14 patients in our cohort, including one sibling pair, had 13 distinct, heterozygous GNAO1 variants classified as pathogenic or likely pathogenic. We attributed the same variant in two siblings to parental mosaicism. Patients initially presented with seizures beginning in the first 3 months of life (8/14), developmental delay (4/14), hypotonia (1/14), or movement disorder (1/14). All patients had hypotonia and developmental delay ranging from mild to severe. Nine had epilepsy, and nine had movement disorders, including dystonia, ataxia, chorea, and dyskinesia. The 13 GNAO1 variants in our patients are predicted to result in amino acid substitutions or deletions in the GNAO1 guanosine triphosphate (GTP)-binding region, analogous to those in previous publications. Patients with variants affecting amino acids 207-221 had only movement disorder and hypotonia. Patients with variants affecting the C-terminal region had the mildest phenotypes. SIGNIFICANCE: GNAO1 encephalopathy most frequently presents with seizures beginning in the first 3 months of life. Concurrent movement disorders are also a prominent feature in the spectrum of GNAO1 encephalopathy. All variants affected the GTP-binding domain of GNAO1, highlighting the importance of this region for G-protein signaling and neurodevelopment.status: publishe

    Biallelic Mutations in ATP5F1D, which Encodes a Subunit of ATP Synthase, Cause a Metabolic Disorder

    No full text

    Ecosystem Services from Tropical Forests: Review of Current Science

    No full text
    corecore